Description
Introduction
In this project, your Pacman agent will find paths through his maze world, both to reach a particular location and to collect food efficiently. You will build general search algorithms and apply them to Pacman scenarios.
The code for this project consists of several Python files, some of which you will need to read and understand in order to complete the assignment, and some of which you can ignore. All the code and supporting files are in your SVN repo.
Files you’ll edit:
search.py Where all of your search algorithms will reside.
searchAgents.py Where all of your searchbased agents will reside.
Files you might want to look at:
The main file that runs Pacman games. This file describes a Pacman GameState type, which you use in this project.
The logic behind how the Pacman world works. This file describes several supporting types like AgentState, Agent, Direction, and Grid.
Useful data structures for implementing search algorithms.
Supporting files you can ignore:
graphicsDisplay.py Graphics for Pacman

Support for Pacman graphics
ASCII graphics for Pacman
Agents to control ghosts
Keyboard interfaces to control Pacman
Code for reading layout files and storing their contents
What to submit: You will fill in portions of search.py and searchAgents.py during the assignment. You should start by typing in the command svn update in the root directory of your cse511a svn repository. Please update the partners.txt file and also make sure the pleasegrade.txt file has all questions uncommented (no leading # sign) in your final submit. Type svn commit m “some message what you did” to submit your code. (During intermediate submits it is recommended to have all questions that you do not want to have graded commented out in pleasegrade.txt.) Finally, each project has its own codename.txt file.
Evaluation: Your code will be autograded for technical correctness. Please do not change the names of any provided functions or classes within the code, or you will wreak havoc on the autograder. However, the correctness of your implementation – not the autograder’s output – will be the final judge of your score. If necessary, we will review and grade assignments individually to ensure that you receive due credit for your work.
Academic Dishonesty: We will be checking your code against other submissions in the class for logical redundancy. If you copy someone else’s code and submit it with minor changes, we will know. These cheat detectors are quite hard to fool, so please don’t try. We trust you all to submit your own work only; please don’t let us down. If you do, we will pursue the strongest consequences available to us.
Getting Help: You are not alone! If you find yourself stuck on something, contact the course staff for help. Office hours and Piazza are there for your support; please use them. If you can’t make our office hours, let us know and we will schedule more. We want these projects to be rewarding and instructional, not frustrating and demoralizing. But, we don’t know when or how to help unless you ask. One more piece of advice: if you don’t know what a variable does or what kind of values it takes, print it out.
Welcome to Pacman
After changing to the project1/ directory in your SVN repo, you should be able to play a game of Pacman by typing the following at the command line:
python pacman.py
Pacman lives in a shiny blue world of twisting corridors and tasty round treats. Navigating this world efficiently will be Pacman’s first step in mastering his domain.
The simplest agent in searchAgents.py is called the GoWestAgent, which always goes West (a trivial reflex agent). This agent can occasionally win:
python pacman.py –layout testMaze –pacman GoWestAgent But things get ugly for this agent when turning is required:
python pacman.py –layout tinyMaze –pacman GoWestAgent
If pacman gets stuck, you can exit the game by typing CTRLc into your terminal.
Soon, your agent will solve not only tinyMaze, but any maze you want.
Note that pacman.py supports a number of options that can each be expressed in a long way (e.g., — layout) or a short way (e.g., l). You can see the list of all options and their default values via:
python pacman.py h
Also, all of the commands that appear in this project also appear in commands.txt, for easy copying and pasting. In UNIX/OS X, you can even run all these commands in order with bash commands.txt.
Note: if you get error messages regarding Tkinter, see this page.
Finding a Fixed Food Dot using Search Algorithms
In searchAgents.py, you’ll find a fully implemented SearchAgent, which plans out a path through Pacman’s world and then executes that path stepbystep. The search algorithms for formulating a plan are not implemented – that’s your job. As you work through the following questions, you might need to refer to this glossary of objects in the code.
First, test that the SearchAgent is working correctly by running:
python pacman.py l tinyMaze p SearchAgent a fn=tinyMazeSearch
The command above tells the SearchAgent to use tinyMazeSearch as its search algorithm, which is implemented in search.py. Pacman should navigate the maze successfully.
Now it’s time to write fullfledged generic search functions to help Pacman plan routes! Pseudocode for the search algorithms you’ll write can be found in the lecture slides and textbook. Remember that a search node must contain not only a state but also the information necessary to reconstruct the path (plan) which gets to that state.
Important note: All of your search functions need to return a list of actions that will lead the agent from the start to the goal. These actions all have to be legal moves (valid directions, no moving through walls).
Hint: Each algorithm is very similar. Algorithms for DFS, BFS, UCS, and A* differ only in the details of how the fringe is managed. So, concentrate on getting DFS right and the rest should be relatively straightforward. Indeed, one possible implementation requires only a single generic search method which is configured with an algorithmspecific queuing strategy. (Your implementation need not be of this form to receive full credit).
Hint: Make sure to check out the Stack, Queue and PriorityQueue types provided to you in util.py!
Question 1 (2 points)
Implement the depthfirst search (DFS) algorithm in the depthFirstSearch function in search.py. To make your algorithm complete, write the graph search version of DFS, which avoids expanding any already visited states (textbook section 3.5).
Your code should quickly find a solution for:
python pacman.py l tinyMaze p SearchAgent python pacman.py l mediumMaze p SearchAgent python pacman.py l bigMaze z .5 p SearchAgent
The Pacman board will show an overlay of the states explored, and the order in which they were explored (brighter red means earlier exploration). Is the exploration order what you would have expected? Does Pacman actually go to all the explored squares on his way to the goal?
Hint: If you use a Stack as your data structure, the solution found by your DFS algorithm for mediumMaze should have a length of 130 (provided you push successors onto the fringe in the order provided by getSuccessors; you might get 244 if you push them in the reverse order). Is this a least cost solution? If not, think about what depthfirst search is doing wrong.
Question 2 (1 point)
Implement the breadthfirst search (BFS) algorithm in the breadthFirstSearch function in search.py. Again, write a graph search algorithm that avoids expanding any already visited states. Test your code the same way you did for depthfirst search.
python pacman.py l mediumMaze p SearchAgent a fn=bfs
epython pacman.py l bigMaze p SearchAgent a fn=bfs z .5
Does BFS find a least cost solution? If not, check your implementation.
Hint: If Pacman moves too slowly for you, try the option –frameTime 0.
Note: If you’ve written your search code generically, your code should work equally well for the eightpuzzle search problem (textbook section 3.2) without any changes.
Varying the Cost Function
While BFS will find a fewestactions path to the goal, we might want to find paths that are “best” in other senses. Consider mediumDottedMaze and mediumScaryMaze. By changing the cost function, we can encourage Pacman to find different paths. For example, we can charge more for dangerous steps in ghostridden areas or less for steps in foodrich areas, and a rational Pacman agent should adjust its behavior in response.
Question 3 (2 points)
Implement the uniformcost graph search algorithm in the uniformCostSearch function in search.py. We encourage you to look through util.py for some data structures that may be useful in your implementation. You should now observe successful behavior in all three of the following layouts, where the agents below are all UCS agents that differ only in the cost function they use (the agents and cost functions are written for you):
python pacman.py l mediumMaze p SearchAgent a fn=ucs python pacman.py l mediumDottedMaze p StayEastSearchAgent python pacman.py l mediumScaryMaze p StayWestSearchAgent
Note: You should get very low and very high path costs for the StayEastSearchAgent and StayWestSearchAgent respectively, due to their exponential cost functions (see searchAgents.py for details).
Note: The cost functions are based on the horizontal position of the agent, NOT the contents of the maze.
A* search
Question 4 (3 points)
Implement A* graph search in the empty function aStarSearch in search.py. A* takes a heuristic function as an argument. Heuristics take two arguments: a state in the search problem (the main argument), and the problem itself (for reference information). The nullHeuristic heuristic function in search.py is a trivial example.
You can test your A* implementation on the original problem of finding a path through a maze to a fixed position using the Manhattan distance heuristic (implemented already as manhattanHeuristic in searchAgents.py).
python pacman.py l bigMaze z .5 p SearchAgent a fn=astar,heuristic=manhattanHeuristic
You should see that A* finds the optimal solution slightly faster than uniform cost search (about 549 vs. 620 search nodes expanded in our implementation, but ties in priority may make your numbers differ slightly). What happens on openMaze for the various search strategies?
Finding All the Corners
The real power of A* will only be apparent with a more challenging search problem. Now, it’s time to formulate a new problem and design a heuristic for it.
In corner mazes, there are four dots, one in each corner. Our new search problem is to find the shortest path through the maze that touches all four corners (whether the maze actually has food there or not). Note that for some mazes like tinyCorners, the shortest path does not always go to the closest food first! Hint: the shortest path through tinyCorners takes 28 steps.
Question 5 (2 points)
Implement the CornersProblem search problem in searchAgents.py. You will need to choose a state representation that encodes all the information necessary to detect whether all four corners have been reached. Now, your search agent should solve:
python pacman.py l tinyCorners p SearchAgent a fn=bfs,prob=CornersProblem
python pacman.py l mediumCorners p SearchAgent a fn=bfs,prob=CornersProblem
To receive full credit, you need to define an abstract state representation that does not encode irrelevant information (like the position of ghosts, where extra food is, etc.). In particular, do not use a Pacman GameState as a search state. Your code will be very, very slow if you do (and also wrong).
Hint: The only parts of the game state you need to reference in your implementation are the starting Pacman position and the location of the four corners.
Our implementation of breadthFirstSearch expands just under 2000 search nodes on mediumCorners.
However, heuristics (used with A* search) can reduce the amount of searching required.
Question 6 (3 points)
Implement a nontrivial, consistent heuristic for the CornersProblem in cornersHeuristic.
Grading: inconsistent heuristics will get no credit. 1 point for any nontrivial consistent heuristic. 1 point for expanding fewer than 1600 nodes. 1 point for expanding fewer than 1200 nodes. Expand fewer than 800, and you’re doing great!
python pacman.py l mediumCorners p AStarCornersAgent z 0.5
Note: AStarCornersAgent is a shortcut for p SearchAgent a fn=aStarSearch,prob=CornersProblem,heuristic=cornersHeuristic.
Admissibility vs. Consistency: Remember, heuristics are just functions that take search states and return numbers that estimate the cost to a nearest goal. More effective heuristics will return values closer to the actual goal costs. To be admissible, the heuristic values must be lower bounds on the actual shortest path cost to the nearest goal (and nonnegative). To be consistent, it must additionally hold that if an action has cost c, then taking that action can only cause a drop in heuristic of at most c.
Remember that admissibility isn’t enough to guarantee correctness in graph search – you need the stronger condition of consistency. However, admissible heuristics are usually also consistent, especially if they are derived from problem relaxations.Therefore it is usually easiest to start out by brainstorming admissible heuristics. Once you have an admissible heuristic that works well, you can check whether it is indeed consistent, too. The only way to guarantee consistency is with a proof. However, inconsistency can often be detected by verifying that for each node you expand, its successor nodes are equal or higher in in fvalue. Moreover, if UCS and A* ever return paths of different lengths, your heuristic is inconsistent. This stuff is tricky! If you need help, don’t hesitate to ask the course staff.
NonTrivial Heuristics: The trivial heuristics are the ones that return zero everywhere (UCS) and the heuristic which computes the true completion cost. The former won’t save you any time, while the latter will timeout the autograder. You want a heuristic which reduces total compute time, though for this assignment the autograder will only check node counts (aside from enforcing a reasonable time limit).
Additionally, any heuristic should always be nonnegative, and should return a value of 0 at every goal state (technically this is a requirement for admissibility!). We will deduct 1 point for any heuristic that returns negative values, or doesn’t behave properly at goal states.
Eating All The Dots
Now we’ll solve a hard search problem: eating all the Pacman food in as few steps as possible. For this, we’ll need a new search problem definition which formalizes the foodclearing problem: FoodSearchProblem in searchAgents.py (implemented for you). A solution is defined to be a path that collects all of the food in the Pacman world. For the present project, solutions do not take into account any ghosts or power pellets; solutions only depend on the placement of walls, regular food and Pacman. (Of course ghosts can ruin the execution of a solution! We’ll get to that in the next project.) If you have written your general search methods correctly, A* with a null heuristic (equivalent to uniformcost search) should quickly find an optimal solution to testSearch with no code change on your part (total cost of 7).
python pacman.py l testSearch p AStarFoodSearchAgent
Note: AStarFoodSearchAgent is a shortcut for p SearchAgent a fn=astar,prob=FoodSearchProblem,heuristic=foodHeuristic.
You should find that UCS starts to slow down even for the seemingly simple tinySearch. As a reference, our implementation takes 2.5 seconds to find a path of length 27 after expanding 4902 search nodes.
Fill in foodHeuristic in searchAgents.py with a consistent heuristic for the FoodSearchProblem. Try your agent on the trickySearch board:
python pacman.py l trickySearch p AStarFoodSearchAgent
Our UCS agent finds the optimal solution in about 13 seconds, exploring over 16,000 nodes. Any nontrivial consistent heuristic will receive 1 point. You will also receive the following additional points, depending on how few nodes your heuristic expands.

Fewer nodes than:
Points
15000
1
12000
2
9000
3
(medium)
7000
4
(hard)
Remember: If your heuristic is inconsistent, you will receive no credit, so be careful! Can you solve mediumSearch in a short time? If so, we’re either very, very impressed, or your heuristic is inconsistent.
We will deduct 1 point for any heuristic that returns negative values, or does not return 0 at every goal state.
Suboptimal Search
Sometimes, even with A* and a good heuristic, finding the optimal path through all the dots is hard. In these cases, we’d still like to find a reasonably good path, quickly. In this section, you’ll write an agent that always greedily eats the closest dot. ClosestDotSearchAgent is implemented for you in searchAgents.py, but it’s missing a key function that finds a path to the closest dot.
Question 8 (2 points)
Implement the function findPathToClosestDot in searchAgents.py. Our agent solves this maze (suboptimally!) in under a second with a path cost of 350:
python pacman.py l bigSearch p ClosestDotSearchAgent z .5
Hint: The quickest way to complete findPathToClosestDot is to fill in the AnyFoodSearchProblem, which is missing its goal test. Then, solve that problem with an appropriate search function. The solution should be very short!
Your ClosestDotSearchAgent won’t always find the shortest possible path through the maze. (If you don’t understand why, ask a TA!) In fact, you can do better if you try.
Mini Contest (up to 3 points extra credit)
Implement an ApproximateSearchAgent in searchAgents.py that finds a short path through the bigSearch layout. The team that find the shortest path using no more than 30 seconds of computation will receive 3 extra credit points and an inclass demonstration of their brilliant Pacman agents. Submissions placing 23 will receive 2 point of extra credit and teams placing 45 will receive 1 point.
python pacman.py l bigSearch p ApproximateSearchAgent z .5 q
We will time your agent using the no graphics option q, and it must complete in under 30 seconds on our grading machines. Please describe what your agent is doing in a comment! We reserve the right to give additional extra credit to creative solutions, even if they don’t work that well. Don’t hardcode the path, of course.
Object Glossary
Here’s a glossary of the key objects in the code base related to search problems, for your reference:
SearchProblem (search.py)
A SearchProblem is an abstract object that represents the state space, successor function, costs, and goal state of a problem. You will interact with any SearchProblem only through the methods defined at
the top of search.py
PositionSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with — it corresponds to searching for a single pellet in a maze.
CornersProblem (searchAgents.py)
A specific type of SearchProblem that you will define — it corresponds to searching for a path through all four corners of a maze.
FoodSearchProblem (searchAgents.py)
A specific type of SearchProblem that you will be working with — it corresponds to searching for a way to eat all the pellets in a maze.
Search Function
A search function is a function which takes an instance of SearchProblem as a parameter, runs some algorithm, and returns a sequence of actions that lead to a goal. Example of search functions are depthFirstSearch and breadthFirstSearch, which you have to write. You are provided tinyMazeSearch which is a very bad search function that only works correctly on tinyMaze
SearchAgent
SearchAgent is a class which implements an Agent (an object that interacts with the world) and does its planning through a search function. The SearchAgent first uses the search function provided to make a plan of actions to take to reach the goal state, and then executes the actions one at a time.